Set Operations

Union

AB={x|xAxB}A ∪ B = {x|x ∈ A ∨ x ∈ B} A1A2An=i=1nAiA_1 \cup A_2 \cdots \cup A_n=\bigcup_{i=1}^{n}A_i

Intersection

AB={x|xAxB}A ∩ B = {x|x ∈ A ∧ x ∈ B} A1A2An=i=1nAiA_1 \cap A_2 \cdots \cap A_n=\bigcap_{i=1}^{n}A_i

Disjoint

AB=A ∩ B = ∅

Difference (complement of B w/ respect to A)

AB={x|xAxB}A - B = {x|x ∈ A ∧ x ∉ B}

Complement

A̅={x|xA}A̅ = {x|x ∉ A}


References