Set Operations Union A∪B={x|x∈A∨x∈B}A ∪ B = {x|x ∈ A ∨ x ∈ B} A1∪A2⋯∪An=⋃i=1nAiA_1 \cup A_2 \cdots \cup A_n=\bigcup_{i=1}^{n}A_i Intersection A∩B={x|x∈A∧x∈B}A ∩ B = {x|x ∈ A ∧ x ∈ B} A1∩A2⋯∩An=⋂i=1nAiA_1 \cap A_2 \cdots \cap A_n=\bigcap_{i=1}^{n}A_i Disjoint A∩B=∅A ∩ B = ∅ Difference (complement of B w/ respect to A) A−B={x|x∈A∧x∉B}A - B = {x|x ∈ A ∧ x ∉ B} Complement A̅={x|x∉A}A̅ = {x|x ∉ A} References